e " : // .

Introduction

Disadvantages of SAT solvers:

® The range of problems that can be solved is limited
® integer variables can not be represented easily and efficiently

® not every constraint can easily and efficiently be rewritten in
CNF:

numerical constraints 1 + o +---+x,, > 4

graph constraints
(“from node x node y can be reached”, “the shortest path from
node x to node y may not be longer than a”)

® dealing with optimization problems is not straightforward

® The specification language is not very simple to use

Constraint Programming

Constraint programming: a programming paradigm
in which a problem is specified declaratively in terms
of high-level constraints, and solvers find solutions

“Constraint programming =
Model (by user)
-
Search (by solver)”

Non-boolean Variables & H
level Constraints

® variables

11 99

all_diff
o~

)P (e
N |)JJIp (e

: . : 5
® variables have domains 2!l diff(
all_diff(9 3

E,={1..9}

@ Constraints
all_different([E
all_different([E

all_different([E,....

|

High-level all difference constraint

N

Solving

Two approaches:

® automatically translate high-level constraints into a low-
level representation (like a CNF formula)
® MiniZinc (specialized language) + G12 (solvers)
® Numberjack (Python library)
Domains
® run a solver which directly supports high-level must be
constraints / finite

Common in constraint programming are finite
domain solvers based on
exhaustive search & propagation

Propagation

Each (high-level) constraint is implemented in a propagator,
which only operates on the variables listed in the constraint

For each variable we store the domain of values the variable
can still take, which may be

® the complete domain (i.e., all values - clearly only works
for problems with finite domains)

D(x)=121},D(y)=12,3}

® [ower and upper bounds, i.e. the minimum and maximal
value the variable can still take

Propagation

The task of the propagator is to maintain domain
consistency, i.e. to shrink the domains of variables to
values that they can still take

if domain D(x) ={ 2}, D(y) ={ 2, 3 } and constraint x # y
apply, then we can deduce that D(y) = {3}.

P Bounds

if domain D(x) =1{1, ..., 5}, D(y) = {1, 2 } and constraint x
+y < 5 apply then we deduce that D(x) = { 1,..., 3 }

C P S earc h no domain to change any more

""CP Search

all rows: all_different(row)
all columns: all_different(col)
all squares: all_different(square)

CP: Branch & Propagate

propagate 2 (row)

branch 4

propagate 6 (square)

Propagation

Propagators may implement special algorithms and
data structures

all-different constraint:
all variables in a list must have a different value
algorithm 1: use inequality constraints independently

Propagation for inequality:
if one variable is fixed,

D(x)=1{12}

D(x,))={1,3} remove the corresponding
D(x)={1,3]} value from the domain

of the other variable

— nothing happens in example

X #X,X#X,X #X
1 27 1 37 T2 3

Propagation

Propagators may implement special algorithms and
data structures

all-different constraint:
all variables in a list must have a different value
algorithm 2: graph-based; bipartite matching

Variable 1 Value 1 Variable 1 is fixed

to value 2
Variable 2 Value 2

Variable 3 Value 3

Comparison to
SAT solvers

CP solvers support larger numbers of constraints &
optimization

When applied to CNF formulas, they search less
efficiently as:

® there is no clause learning

® there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solvers
(SAT-Modulo-Theories), which combine ideas of constraint
programming and SAT solvers

Robert Nieuwenhuis, 2006.

Implementation issues

When to run a propagator?
® when a variable changes? (In any way)

® when one particular bound changes?

for domain D(x)={1,2,3}, D(y)={1, 2,3 }and
constraint x + y < 5; should we propagate when
we remove value 1 from D(y)? When we remove value 37

In the CP literature, many different such strategies have
been explored, called AC1, AC2, AC3, ... AC5

Implementation issues

Should we store simplified constraints during the
search?

D(x)=(1,2,3}, D(y) ={ 4}, D(z) = {1, 2},

X+y+Z<10XxX+2z<6

Which order to select variables?

Which order to select values?

Implementation issues

® How to branch over variables?

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

