
CONSTRAINT PROGRAMMING

Introduction
Disadvantages of SAT solvers:

The range of problems that can be solved is limited
 integer variables can not be represented easily and efficiently
 not every constraint can easily and efficiently be rewritten in

CNF:
 numerical constraints
 graph constraints

(“from node x node y can be reached”, “the shortest path from
node x to node y may not be longer than a”)

 dealing with optimization problems is not straightforward
The specification language is not very simple to use

Constraint Programming
Constraint programming: a programming paradigm

in which a problem is specified declaratively in terms
of high-level constraints, and solvers find solutions

“Constraint programming =
Model (by user)
+
Search (by solver)”

Non-boolean Variables & High-
level Constraints

variables
 E11 ... E99

variables have domains
 Exy = {1 ... 9}

Constraints
all_different([E1x]), …
all_different([Ex1]),

all_different([E11...E33]), ...

all_diff(
all_diff(

all_diff(
all_diff(

...

...

))

)
)

all_diff(
)

High-level all difference constraint

Solving
Two approaches:

automatically translate high-level constraints into a low-
level representation (like a CNF formula)
 MiniZinc (specialized language) + G12 (solvers)
 NumberJack (Python library)

run a solver which directly supports high-level
constraints

Common in constraint programming are finite
domain solvers based on

exhaustive search & propagation

Domains
must be
finite

Propagation
Each (high-level) constraint is implemented in a propagator,

which only operates on the variables listed in the constraint

For each variable we store the domain of values the variable
can still take, which may be
the complete domain (i.e., all values – clearly only works

for problems with finite domains)

D(x) = { 2 }, D(y) = { 2, 3 }

lower and upper bounds, i.e. the minimum and maximal
value the variable can still take

Propagation
The task of the propagator is to maintain domain

consistency, i.e. to shrink the domains of variables to
values that they can still take

if domain D(x) = { 2 }, D(y) = { 2, 3 } and constraint x ≠ y
apply, then we can deduce that D(y) = {3}.

if domain D(x) = { 1, …, 5 }, D(y) = { 1, 2 } and constraint x
+ y < 5 apply then we deduce that D(x) = { 1,..., 3 }

Bounds

CP Search
Search (Variables):

propagate all constraints till fix point
if contradiction found then return
if at least one variable is not fixed yet then

pick one variable V not fixed
for each possible value of V do

let V=value in this iteration
Search (Variables)

od
else

print solution in Variables

no domain to change any more

CP Search
 all rows: all_different(row)

all columns: all_different(col)
all squares: all_different(square)

CP: Branch & Propagate

propagate 2 (row)
branch 4
propagate 6 (square)

Propagation
Propagators may implement special algorithms and

data structures

all-different constraint: all-different constraint:
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 1:algorithm 1: use inequality constraints independently use inequality constraints independently

D(xD(x11) = { 1, 2 }) = { 1, 2 }
D(xD(x22) = { 1, 3 }) = { 1, 3 }
D(xD(x33) = { 1, 3 }) = { 1, 3 }
xx1 1 ≠≠ x x22, x, x1 1 ≠≠ x x33, x, x2 2 ≠≠ x x33

Propagation for inequality:Propagation for inequality:
if one variable is fixed, if one variable is fixed,
remove the correspondingremove the corresponding
value from the domainvalue from the domain
of the other variableof the other variable

 → → nothing happens in examplenothing happens in example

Propagation
Propagators may implement special algorithms and

data structures

all-different constraint: all-different constraint:
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 2:algorithm 2: graph-based; bipartite matching graph-based; bipartite matching

Variable 1Variable 1

Variable 2 Variable 2

Variable 3Variable 3

Value 1Value 1

Value 2Value 2

Value 3Value 3

Variable 1 is fixedVariable 1 is fixed
to value 2to value 2

Comparison to
SAT solvers
CP solvers support larger numbers of constraints &

optimization

When applied to CNF formulas, they search less
efficiently as:
there is no clause learning
there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solversThese weaknesses led to the development of SMT SAT solvers
(SAT-Modulo-Theories), which combine ideas of constraint (SAT-Modulo-Theories), which combine ideas of constraint
programming and SAT solversprogramming and SAT solvers

Robert Nieuwenhuis, 2006.Robert Nieuwenhuis, 2006.

Implementation issues

When to run a propagator?
when a variable changes? (In any way)
when one particular bound changes?

for domain D(x) = { 1, 2, 3 }, D(y) = { 1, 2, 3 } and
constraint x + y < 5; should we propagate when
we remove value 1 from D(y)? When we remove value 3?

In the CP literature, many different such strategies have
been explored, called AC1, AC2, AC3, … AC5

Implementation issues

Should we store simplified constraints during the
search?

Which order to select variables?
Which order to select values?

D(x)={1,2,3}, D(y) = { 4 }, D(z) = { 1, 2},
x + y + z < 10 x + z < 6 →

Implementation issues

How to branch over variables?

D(x)={1,...,10}, D(z) = { 1,...,10}, x + y < 20

Branch with D(x)={c} for all c in 1...10?

Branch with D(x)={1...,5} and D(x)={6,..10}?

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

