
CONSTRAINT PROGRAMMING

Introduction
Disadvantages of SAT solvers:

The range of problems that can be solved is limited
 integer variables can not be represented easily and efficiently
 not every constraint can easily and efficiently be rewritten in

CNF:
 numerical constraints
 graph constraints

(“from node x node y can be reached”, “the shortest path from
node x to node y may not be longer than a”)

 dealing with optimization problems is not straightforward
The specification language is not very simple to use

Constraint Programming
Constraint programming: a programming paradigm

in which a problem is specified declaratively in terms
of high-level constraints, and solvers find solutions

“Constraint programming =
Model (by user)
+
Search (by solver)”

Non-boolean Variables & High-
level Constraints

variables
 E11 ... E99

variables have domains
 Exy = {1 ... 9}

Constraints
all_different([E1x]), …
all_different([Ex1]),

all_different([E11...E33]), ...

all_diff(
all_diff(

all_diff(
all_diff(

...

...

))

)
)

all_diff(
)

High-level all difference constraint

Solving
Two approaches:

automatically translate high-level constraints into a low-
level representation (like a CNF formula)
 MiniZinc (specialized language) + G12 (solvers)
 NumberJack (Python library)

run a solver which directly supports high-level
constraints

Common in constraint programming are finite
domain solvers based on

exhaustive search & propagation

Domains
must be
finite

Propagation
Each (high-level) constraint is implemented in a propagator,

which only operates on the variables listed in the constraint

For each variable we store the domain of values the variable
can still take, which may be
the complete domain (i.e., all values – clearly only works

for problems with finite domains)

D(x) = { 2 }, D(y) = { 2, 3 }

lower and upper bounds, i.e. the minimum and maximal
value the variable can still take

Propagation
The task of the propagator is to maintain domain

consistency, i.e. to shrink the domains of variables to
values that they can still take

if domain D(x) = { 2 }, D(y) = { 2, 3 } and constraint x ≠ y
apply, then we can deduce that D(y) = {3}.

if domain D(x) = { 1, …, 5 }, D(y) = { 1, 2 } and constraint x
+ y < 5 apply then we deduce that D(x) = { 1,..., 3 }

Bounds

CP Search
Search (Variables):

propagate all constraints till fix point
if contradiction found then return
if at least one variable is not fixed yet then

pick one variable V not fixed
for each possible value of V do

let V=value in this iteration
Search (Variables)

od
else

print solution in Variables

no domain to change any more

CP Search
 all rows: all_different(row)

all columns: all_different(col)
all squares: all_different(square)

CP: Branch & Propagate

propagate 2 (row)
branch 4
propagate 6 (square)

Propagation
Propagators may implement special algorithms and

data structures

all-different constraint: all-different constraint:
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 1:algorithm 1: use inequality constraints independently use inequality constraints independently

D(xD(x11) = { 1, 2 }) = { 1, 2 }
D(xD(x22) = { 1, 3 }) = { 1, 3 }
D(xD(x33) = { 1, 3 }) = { 1, 3 }
xx1 1 ≠≠ x x22, x, x1 1 ≠≠ x x33, x, x2 2 ≠≠ x x33

Propagation for inequality:Propagation for inequality:
if one variable is fixed, if one variable is fixed,
remove the correspondingremove the corresponding
value from the domainvalue from the domain
of the other variableof the other variable

 → → nothing happens in examplenothing happens in example

Propagation
Propagators may implement special algorithms and

data structures

all-different constraint: all-different constraint:
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 2:algorithm 2: graph-based; bipartite matching graph-based; bipartite matching

Variable 1Variable 1

Variable 2 Variable 2

Variable 3Variable 3

Value 1Value 1

Value 2Value 2

Value 3Value 3

Variable 1 is fixedVariable 1 is fixed
to value 2to value 2

Comparison to
SAT solvers
CP solvers support larger numbers of constraints &

optimization

When applied to CNF formulas, they search less
efficiently as:
there is no clause learning
there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solversThese weaknesses led to the development of SMT SAT solvers
(SAT-Modulo-Theories), which combine ideas of constraint (SAT-Modulo-Theories), which combine ideas of constraint
programming and SAT solversprogramming and SAT solvers

Robert Nieuwenhuis, 2006.Robert Nieuwenhuis, 2006.

Implementation issues

When to run a propagator?
when a variable changes? (In any way)
when one particular bound changes?

for domain D(x) = { 1, 2, 3 }, D(y) = { 1, 2, 3 } and
constraint x + y < 5; should we propagate when
we remove value 1 from D(y)? When we remove value 3?

In the CP literature, many different such strategies have
been explored, called AC1, AC2, AC3, … AC5

Implementation issues

Should we store simplified constraints during the
search?

Which order to select variables?
Which order to select values?

D(x)={1,2,3}, D(y) = { 4 }, D(z) = { 1, 2},
x + y + z < 10 x + z < 6 →

Implementation issues

How to branch over variables?

D(x)={1,...,10}, D(z) = { 1,...,10}, x + y < 20

Branch with D(x)={c} for all c in 1...10?

Branch with D(x)={1...,5} and D(x)={6,..10}?

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

