
CONSTRAINT PROGRAMMING



Introduction
Disadvantages of SAT solvers:

The range of problems that can be solved is limited
 integer variables can not be represented easily and efficiently
 not every constraint can easily and efficiently be rewritten in 

CNF:
 numerical constraints
 graph constraints   

(“from node x node y can be reached”, “the shortest path from 
node x to node y may not be longer than a”)

 dealing with optimization problems is not straightforward
The specification language is not very simple to use



Constraint Programming
Constraint programming: a programming paradigm 

in which a problem is specified declaratively in terms 
of high-level constraints, and solvers find solutions

“Constraint programming =
Model (by user)
+ 
Search (by solver)”



Non-boolean Variables & High-
level Constraints

variables
 E11 ... E99

variables have domains
 Exy = {1 ... 9}

Constraints
all_different([E1x]), …
all_different([Ex1]),

all_different([E11...E33]), ...

all_diff(
all_diff(

all_diff(
all_diff(

...

...

) )

)
)

all_diff(
)

High-level all difference constraint



Solving
Two approaches:

automatically translate high-level constraints into a low-
level representation (like a CNF formula)
 MiniZinc (specialized language) + G12 (solvers)
 NumberJack (Python library)

run a solver which directly supports high-level 
constraints 

Common in constraint programming are finite 
domain solvers based on 

exhaustive search & propagation

Domains 
must be
finite



Propagation
Each (high-level) constraint is implemented in a propagator, 

which only operates on the variables listed in the constraint

For each variable we store the domain of values the variable 
can still take, which may be
the complete domain (i.e., all values – clearly only works 

for problems with finite domains)

D(x) = { 2 }, D(y) = { 2, 3 }

lower and upper bounds, i.e. the minimum and maximal 
value the variable can still take



Propagation
The task of the propagator is to maintain domain 

consistency, i.e. to shrink the domains of variables to 
values that they can still take

if domain D(x) = { 2 }, D(y) = { 2, 3 } and constraint x ≠ y 
apply, then we can deduce that D(y) = {3}.

if domain D(x) = { 1, …, 5 }, D(y) = { 1, 2 } and constraint x 
+ y < 5 apply then we deduce that D(x) = { 1,..., 3 }

Bounds



CP Search
Search ( Variables ):

propagate all constraints till fix point
if contradiction found then return
if at least one variable is not fixed yet then

pick one variable V not fixed
for each possible value of V do

let V=value in this iteration
Search ( Variables )

od
else

print solution in Variables

no domain to change any more



CP Search
     all rows:       all_different(row)

all columns: all_different(col)
all squares: all_different(square)
 

CP: Branch & Propagate

propagate 2 (row)
branch 4
propagate 6 (square)



Propagation
Propagators may implement special algorithms and  

data structures

all-different constraint: all-different constraint: 
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 1:algorithm 1: use inequality constraints independently use inequality constraints independently

D(xD(x11) = { 1, 2 }) = { 1, 2 }
D(xD(x22) = { 1, 3 }) = { 1, 3 }
D(xD(x33) = { 1, 3 }) = { 1, 3 }
xx1 1 ≠≠ x x22, x, x1 1 ≠≠ x x33, x, x2 2 ≠≠ x x33

Propagation for inequality:Propagation for inequality:
if one variable is fixed, if one variable is fixed, 
remove the correspondingremove the corresponding
value from the domainvalue from the domain
of the other variableof the other variable

 → → nothing happens in examplenothing happens in example



Propagation
Propagators may implement special algorithms and  

data structures

all-different constraint: all-different constraint: 
all variables in a list must have a different valueall variables in a list must have a different value

algorithm 2:algorithm 2: graph-based; bipartite matching graph-based; bipartite matching

Variable 1Variable 1

Variable 2 Variable 2 

Variable 3Variable 3

Value 1Value 1

Value 2Value 2

Value 3Value 3

Variable 1 is fixedVariable 1 is fixed
to value 2to value 2



Comparison to 
SAT solvers
CP solvers support larger numbers of constraints & 

optimization

When applied to CNF formulas, they search less 
efficiently as:
there is no clause learning
there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solversThese weaknesses led to the development of SMT SAT solvers
(SAT-Modulo-Theories), which combine ideas of constraint (SAT-Modulo-Theories), which combine ideas of constraint 
programming and SAT solversprogramming and SAT solvers

Robert Nieuwenhuis, 2006.Robert Nieuwenhuis, 2006.



Implementation issues

When to run a propagator?
when a variable changes? (In any way)
when one particular bound changes?

for domain D(x) = { 1, 2, 3 }, D(y) = { 1, 2, 3 } and 
constraint x + y < 5; should we propagate when 
we remove value 1 from D(y)? When we remove value 3?

In the CP literature, many different such strategies have
been explored, called AC1, AC2, AC3, … AC5



Implementation issues

Should we store simplified constraints during the 
search?

Which order to select variables?
Which order to select values?

D(x)={1,2,3}, D(y) = { 4 }, D(z) = { 1, 2},  
x + y + z < 10  x + z < 6 →



Implementation issues

How to branch over variables?

D(x)={1,...,10}, D(z) = { 1,...,10}, x + y < 20 

Branch with D(x)={c} for all c in 1...10?

Branch with D(x)={1...,5} and D(x)={6,..10}?
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